nexusstc/Python Machine Learning: Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analytics/176aab57e875a95795c900e624f2b222.pdf
Python machine learning : unlock deeper insights into machine learning with this vital guide to cutting-edge predictive analytics 🔍
Sebastian Raschka
Packt Publishing Limited, Packt Publishing, Birmingham, UK, 2015
英语 [en] · PDF · 10.2MB · 2015 · 📘 非小说类图书 · 🚀/lgli/lgrs/nexusstc/zlib · Save
描述
Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analytics
About This Book
Leverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualization Learn effective strategies and best practices to improve and optimize machine learning systems and algorithms Ask – and answer – tough questions of your data with robust statistical models, built for a range of datasets Who This Book Is For
If you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning – whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource.
What You Will Learn
Explore how to use different machine learning models to ask different questions of your data Learn how to build neural networks using Keras and Theano Find out how to write clean and elegant Python code that will optimize the strength of your algorithms Discover how to embed your machine learning model in a web application for increased accessibility Predict continuous target outcomes using regression analysis Uncover hidden patterns and structures in data with clustering Organize data using effective pre-processing techniques Get to grips with sentiment analysis to delve deeper into textual and social media data In Detail
Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success.
Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization.
Style and approach
Python Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models.
About This Book
Leverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualization Learn effective strategies and best practices to improve and optimize machine learning systems and algorithms Ask – and answer – tough questions of your data with robust statistical models, built for a range of datasets Who This Book Is For
If you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning – whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource.
What You Will Learn
Explore how to use different machine learning models to ask different questions of your data Learn how to build neural networks using Keras and Theano Find out how to write clean and elegant Python code that will optimize the strength of your algorithms Discover how to embed your machine learning model in a web application for increased accessibility Predict continuous target outcomes using regression analysis Uncover hidden patterns and structures in data with clustering Organize data using effective pre-processing techniques Get to grips with sentiment analysis to delve deeper into textual and social media data In Detail
Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success.
Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization.
Style and approach
Python Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models.
备用文件名
lgli/1783555130 Python Machine Learning [Raschka 2015-09-01] {16FD5101}.pdf
备用文件名
lgrsnf/1783555130 Python Machine Learning [Raschka 2015-09-01] {16FD5101}.pdf
备用文件名
zlib/Computers/Artificial Intelligence (AI)/Sebastian Raschka/Python Machine Learning_21466364.pdf
备选标题
Python Machine Learning : Learn How to Build Powerful Python Machine Learning Algorithms to Generate Useful Data Insights with This Data Analysis Tutorial
备选标题
Python и машинное обучение: наука и искусство построения алгоритмов, которые извлекают знания из данных
备选标题
Python Machine Learning, 1st Edition
备选作者
Себастьян Рашка; перевод с англ. А. В. Логунова
备选作者
Raschka, Sebastian
备选作者
Рашка, Себастьян
备用出版商
Academic Press, Incorporated
备用出版商
Morgan Kaufmann Publishers
备用出版商
Jackdaw Publications Ltd
备用出版商
Constable and Robinson
备用出版商
Reprint Services Corp.
备用出版商
Vintage Digital
备用出版商
Brooks/Cole
备用出版商
ДМК Пресс
备用版本
Community experience distilled, Community experience distilled, England, 2016
备用版本
Community experience distilled, Birmingham, UK, 2015
备用版本
United Kingdom and Ireland, United Kingdom
备用版本
United States, United States of America
备用版本
Цветное издание, Москва, Russia, 2017
备用版本
1st edition, 2015
元数据中的注释
{"isbns":["0098691910","0120797720","0305722190","1422762203","1783555130","9780098691915","9780120797721","9780305722197","9781422762202","9781783555130"],"last_page":454,"publisher":"Packt Publishing"}
元数据中的注释
Includes index.
元数据中的注释
gaaagpl
元数据中的注释
Предм. указ.: с. 408-417
Пер.: Raschka, Sebastian Python machine learning Birmingham ; Mumbai : Packt, cop. 2016 978-1-78355-513-0
Пер.: Raschka, Sebastian Python machine learning Birmingham ; Mumbai : Packt, cop. 2016 978-1-78355-513-0
元数据中的注释
РГБ
元数据中的注释
Russian State Library [rgb] MARC:
=001 010416772
=005 20200929115449.0
=008 200713s2017\\\\ru\\\\\\\\\\\\|||\|\rus\d
=017 \\ $a 7086-20 $b RuMoRGB
=020 \\ $a 978-5-97060-409-0 $c 200 экз.
=040 \\ $a RuMoRGB $b rus $e rcr
=041 1\ $a rus $h eng
=044 \\ $a ru
=084 \\ $a З973.236-018.19Python,07 $2 rubbk
=100 1\ $a Рашка, Себастьян
=245 00 $a Python и машинное обучение : $b наука и искусство построения алгоритмов, которые извлекают знания из данных $c Себастьян Рашка ; перевод с англ. А. В. Логунова
=260 \\ $a Москва $b ДМК Пресс $c 2017
=300 \\ $a 417 с. $b ил., цв. ил., табл. $c 25 см
=336 \\ $a Текст (визуальный)
=337 \\ $a непосредственный
=490 0\ $a Цветное издание
=500 \\ $a Предм. указ.: с. 408-417
=534 \\ $p Пер.: $a Raschka, Sebastian $t Python machine learning $c Birmingham ; Mumbai : Packt, cop. 2016 $z 978-1-78355-513-0
=650 \7 $a Техника. Технические науки -- Энергетика. Радиоэлектроника -- Энергетика -- Вычислительная техника -- Вычислительные машины электронные цифровые -- Обучающие машины -- Языки программирования -- Python -- Пособие для специалистов $2 rubbk
=852 \\ $a РГБ $b FB $j 2 20-44/151 $x 90
=001 010416772
=005 20200929115449.0
=008 200713s2017\\\\ru\\\\\\\\\\\\|||\|\rus\d
=017 \\ $a 7086-20 $b RuMoRGB
=020 \\ $a 978-5-97060-409-0 $c 200 экз.
=040 \\ $a RuMoRGB $b rus $e rcr
=041 1\ $a rus $h eng
=044 \\ $a ru
=084 \\ $a З973.236-018.19Python,07 $2 rubbk
=100 1\ $a Рашка, Себастьян
=245 00 $a Python и машинное обучение : $b наука и искусство построения алгоритмов, которые извлекают знания из данных $c Себастьян Рашка ; перевод с англ. А. В. Логунова
=260 \\ $a Москва $b ДМК Пресс $c 2017
=300 \\ $a 417 с. $b ил., цв. ил., табл. $c 25 см
=336 \\ $a Текст (визуальный)
=337 \\ $a непосредственный
=490 0\ $a Цветное издание
=500 \\ $a Предм. указ.: с. 408-417
=534 \\ $p Пер.: $a Raschka, Sebastian $t Python machine learning $c Birmingham ; Mumbai : Packt, cop. 2016 $z 978-1-78355-513-0
=650 \7 $a Техника. Технические науки -- Энергетика. Радиоэлектроника -- Энергетика -- Вычислительная техника -- Вычислительные машины электронные цифровые -- Обучающие машины -- Языки программирования -- Python -- Пособие для специалистов $2 rubbk
=852 \\ $a РГБ $b FB $j 2 20-44/151 $x 90
备用描述
Cover
Copyright
Credits
Foreword
About the Author
About the Reviewers
www.PacktPub.com
Table of Contents
Preface
Chapter 1: Giving Computers the Ability to Learn from Data
Building intelligent machines to transform data into knowledge
The three different types of machine learning
Making predictions about the future with supervised learning
Classification for predicting class labels
Regression for predicting continuous outcomes
Solving interactive problems with reinforcement learning
Discovering hidden structures with unsupervised learning
Finding subgroups with clustering
Dimensionality reduction for data compression
An introduction to the basic terminology and notations
A roadmap for building machine learning systems
Preprocessing – getting data into shape
Training and selecting a predictive model
Evaluating models and predicting unseen data instances
Using Python for machine learning
Installing Python packages
Summary
Chapter 2: Training Machine Learning Algorithms for Classification
Artificial neurons – a brief glimpse into the early history of machine learning
Implementing a perceptron learning algorithm in Python
Training a perceptron model on the Iris dataset
Adaptive linear neurons and the convergence of learning
Minimizing cost functions with gradient descent
Implementing an Adaptive Linear Neuron in Python
Large scale machine learning and stochastic gradient descent
Summary
Chapter 3: A Tour of Machine Learning Classifiers Using Scikit-learn
Choosing a classification algorithm
First steps with scikit-learn
Training a perceptron via scikit-learn
Modeling class probabilities via logistic regression
Logistic regression intuition and conditional probabilities
Learning the weights of the logistic cost function
Training a logistic regression model with scikit-learn
Tackling overfitting via regularization
Maximum margin classification with support vector machines
Maximum margin intuition
Dealing with the nonlinearly separable case using slack variables
Alternative implementations in scikit-learn
Solving nonlinear problems using a kernel SVM
Using the kernel trick to find separating hyperplanes in higher dimensional space
Decision tree learning
Maximizing information gain – getting the most bang for the buck
Building a decision tree
Combining weak to strong learners via random forests
K-nearest neighbors – a lazy learning algorithm
Summary
Chapter 4: Building Good Training
Sets – Data Preprocessing
Dealing with missing data
Eliminating samples or features with missing values
Imputing missing values
Understanding the scikit-learn estimator API
Handling categorical data
Mapping ordinal features
Encoding class labels
Performing one-hot encoding on nominal features
Partitioning a dataset in training and test sets
Bringing features onto the same scale
Selecting meaningful features
Sparse solutions with L1 regularization
Sequential feature selection algorithms
Assessing feature importance with random forests
Summary
Chapter 5: Compressing Data via Dimensionality Reduction
Unsupervised dimensionality reduction via principal component analysis
Total and explained variance
Feature transformation
Principal component analysis in scikit-learn
Supervised data compression via linear discriminant analysis
Computing the scatter matrices
Selecting linear discriminants for the new feature subspace
Projecting samples onto the new feature space
LDA via scikit-learn
Using kernel principal component analysis for nonlinear mappings
Kernel functions and the kernel trick
Implementing a kernel principal component analysis in Python
Example 1 – separating half-moon shapes
Example 2 – separating concentric circles
Projecting new data points
Kernel principal component analysis in scikit-learn
Summary
Chapter 6: Learning Best Practices for Model Evaluation and Hyperparameter Tuning
Streamlining workflows with pipelines
Loading the Breast Cancer Wisconsin dataset
Combining transformers and estimators in a pipeline
Using k-fold cross-validation to assess model performance
The holdout method
K-fold cross-validation
Debugging algorithms with learning and validation curves
Diagnosing bias and variance problems with learning curves
Addressing overfitting and underfitting with validation curves
Fine-tuning machine learning models via grid search
Tuning hyperparameters via grid search
Algorithm selection with nested cross-validation
Looking at different performance evaluation metrics
Reading a confusion matrix
Optimizing the precision and recall of a classification model
Plotting a receiver operating characteristic
The scoring metrics for multiclass classification
Summary
Chapter 7: Combining Different Models for Ensemble Learning
Learning with ensembles
Implementing a simple majority vote classifier
Combining different algorithms for classification with majority vote
Evaluating and tuning the ensemble classifier
Bagging – building an ensemble of classifiers from bootstrap samples
Leveraging weak learners via adaptive boosting
Summary
Chapter 8: Applying Machine Learning to Sentiment Analysis
Obtaining the IMDb movie review dataset
Introducing the bag-of-words model
Transforming words into feature vectors
Assessing word relevancy via term frequency-inverse document frequency
Cleaning text data
Processing documents into tokens
Training a logistic regression model for document classification
Working with bigger data – online algorithms and out-of-core learning
Summary
Chapter 9: Embedding a Machine Learning Model into
a Web Application
Serializing fitted scikit-learn estimators
Setting up a SQLite database for data storage
Developing a web application with Flask
Our first Flask web application
Form validation and rendering
Turning the movie classifier into a web application
Deploying the web application to a public server
Updating the movie review classifier
Summary
Chapter 10: Predicting Continuous
Target Variables with Regression Analysis
Introducing a simple linear regression model
Exploring the Housing Dataset
Visualizing the important characteristics of a dataset
Implementing an ordinary least squares linear regression model
Solving regression for regression parameters with gradient descent
Estimating the coefficient of a regression model via scikit-learn
Fitting a robust regression model using RANSAC
Evaluating the performance of linear regression models
Using regularized methods for regression
Turning a linear regression model into a curve – polynomial regression
Modeling nonlinear relationships in the Housing Dataset
Dealing with nonlinear relationships using random forests
Decision tree regression
Random forest regression
Summary
Chapter 11
: Working with Unlabeled
Data – Clustering Analysis
Grouping objects by similarity using k-means
K-means++
Hard versus soft clustering
Using the elbow method to find the optimal number of clusters
Quantifying the quality of clustering via silhouette plots
Organizing clusters as a hierarchical tree
Performing hierarchical clustering on a distance matrix
Attaching dendrograms to a heat map
Applying agglomerative clustering via scikit-learn
Locating regions of high density via DBSCAN
Summary
Chapter 12: Training Artificial Neural Networks for Image Recognition
Modeling complex functions with artificial neural networks
Single-layer neural network recap
Introducing the multi-layer neural network architecture
Activating a neural network via forward propagation
Classifying handwritten digits
Obtaining the MNIST dataset
Implementing a multi-layer perceptron
Training an artificial neural network
Computing the logistic cost function
Training neural networks via backpropagation
Developing your intuition for backpropagation
Debugging neural networks with gradient checking
Convergence in neural networks
Other neural network architectures
Convolutional Neural Networks
Recurrent Neural Networks
A few last words about neural network implementation
Summary
Chapter 13: Parallelizing Neural Network Training with Theano
Building, compiling, and running expressions with Theano
What is Theano?
First steps with Theano
Configuring Theano
Working with array structures
Wrapping things up – a linear regression example
Choosing activation functions for feedforward neural networks
Logistic function recap
Estimating probabilities in multi-class classification via the softmax function
Broadening the output spectrum by using a hyperbolic tangent
Training neural networks efficiently using Keras
Summary
Index
Copyright
Credits
Foreword
About the Author
About the Reviewers
www.PacktPub.com
Table of Contents
Preface
Chapter 1: Giving Computers the Ability to Learn from Data
Building intelligent machines to transform data into knowledge
The three different types of machine learning
Making predictions about the future with supervised learning
Classification for predicting class labels
Regression for predicting continuous outcomes
Solving interactive problems with reinforcement learning
Discovering hidden structures with unsupervised learning
Finding subgroups with clustering
Dimensionality reduction for data compression
An introduction to the basic terminology and notations
A roadmap for building machine learning systems
Preprocessing – getting data into shape
Training and selecting a predictive model
Evaluating models and predicting unseen data instances
Using Python for machine learning
Installing Python packages
Summary
Chapter 2: Training Machine Learning Algorithms for Classification
Artificial neurons – a brief glimpse into the early history of machine learning
Implementing a perceptron learning algorithm in Python
Training a perceptron model on the Iris dataset
Adaptive linear neurons and the convergence of learning
Minimizing cost functions with gradient descent
Implementing an Adaptive Linear Neuron in Python
Large scale machine learning and stochastic gradient descent
Summary
Chapter 3: A Tour of Machine Learning Classifiers Using Scikit-learn
Choosing a classification algorithm
First steps with scikit-learn
Training a perceptron via scikit-learn
Modeling class probabilities via logistic regression
Logistic regression intuition and conditional probabilities
Learning the weights of the logistic cost function
Training a logistic regression model with scikit-learn
Tackling overfitting via regularization
Maximum margin classification with support vector machines
Maximum margin intuition
Dealing with the nonlinearly separable case using slack variables
Alternative implementations in scikit-learn
Solving nonlinear problems using a kernel SVM
Using the kernel trick to find separating hyperplanes in higher dimensional space
Decision tree learning
Maximizing information gain – getting the most bang for the buck
Building a decision tree
Combining weak to strong learners via random forests
K-nearest neighbors – a lazy learning algorithm
Summary
Chapter 4: Building Good Training
Sets – Data Preprocessing
Dealing with missing data
Eliminating samples or features with missing values
Imputing missing values
Understanding the scikit-learn estimator API
Handling categorical data
Mapping ordinal features
Encoding class labels
Performing one-hot encoding on nominal features
Partitioning a dataset in training and test sets
Bringing features onto the same scale
Selecting meaningful features
Sparse solutions with L1 regularization
Sequential feature selection algorithms
Assessing feature importance with random forests
Summary
Chapter 5: Compressing Data via Dimensionality Reduction
Unsupervised dimensionality reduction via principal component analysis
Total and explained variance
Feature transformation
Principal component analysis in scikit-learn
Supervised data compression via linear discriminant analysis
Computing the scatter matrices
Selecting linear discriminants for the new feature subspace
Projecting samples onto the new feature space
LDA via scikit-learn
Using kernel principal component analysis for nonlinear mappings
Kernel functions and the kernel trick
Implementing a kernel principal component analysis in Python
Example 1 – separating half-moon shapes
Example 2 – separating concentric circles
Projecting new data points
Kernel principal component analysis in scikit-learn
Summary
Chapter 6: Learning Best Practices for Model Evaluation and Hyperparameter Tuning
Streamlining workflows with pipelines
Loading the Breast Cancer Wisconsin dataset
Combining transformers and estimators in a pipeline
Using k-fold cross-validation to assess model performance
The holdout method
K-fold cross-validation
Debugging algorithms with learning and validation curves
Diagnosing bias and variance problems with learning curves
Addressing overfitting and underfitting with validation curves
Fine-tuning machine learning models via grid search
Tuning hyperparameters via grid search
Algorithm selection with nested cross-validation
Looking at different performance evaluation metrics
Reading a confusion matrix
Optimizing the precision and recall of a classification model
Plotting a receiver operating characteristic
The scoring metrics for multiclass classification
Summary
Chapter 7: Combining Different Models for Ensemble Learning
Learning with ensembles
Implementing a simple majority vote classifier
Combining different algorithms for classification with majority vote
Evaluating and tuning the ensemble classifier
Bagging – building an ensemble of classifiers from bootstrap samples
Leveraging weak learners via adaptive boosting
Summary
Chapter 8: Applying Machine Learning to Sentiment Analysis
Obtaining the IMDb movie review dataset
Introducing the bag-of-words model
Transforming words into feature vectors
Assessing word relevancy via term frequency-inverse document frequency
Cleaning text data
Processing documents into tokens
Training a logistic regression model for document classification
Working with bigger data – online algorithms and out-of-core learning
Summary
Chapter 9: Embedding a Machine Learning Model into
a Web Application
Serializing fitted scikit-learn estimators
Setting up a SQLite database for data storage
Developing a web application with Flask
Our first Flask web application
Form validation and rendering
Turning the movie classifier into a web application
Deploying the web application to a public server
Updating the movie review classifier
Summary
Chapter 10: Predicting Continuous
Target Variables with Regression Analysis
Introducing a simple linear regression model
Exploring the Housing Dataset
Visualizing the important characteristics of a dataset
Implementing an ordinary least squares linear regression model
Solving regression for regression parameters with gradient descent
Estimating the coefficient of a regression model via scikit-learn
Fitting a robust regression model using RANSAC
Evaluating the performance of linear regression models
Using regularized methods for regression
Turning a linear regression model into a curve – polynomial regression
Modeling nonlinear relationships in the Housing Dataset
Dealing with nonlinear relationships using random forests
Decision tree regression
Random forest regression
Summary
Chapter 11
: Working with Unlabeled
Data – Clustering Analysis
Grouping objects by similarity using k-means
K-means++
Hard versus soft clustering
Using the elbow method to find the optimal number of clusters
Quantifying the quality of clustering via silhouette plots
Organizing clusters as a hierarchical tree
Performing hierarchical clustering on a distance matrix
Attaching dendrograms to a heat map
Applying agglomerative clustering via scikit-learn
Locating regions of high density via DBSCAN
Summary
Chapter 12: Training Artificial Neural Networks for Image Recognition
Modeling complex functions with artificial neural networks
Single-layer neural network recap
Introducing the multi-layer neural network architecture
Activating a neural network via forward propagation
Classifying handwritten digits
Obtaining the MNIST dataset
Implementing a multi-layer perceptron
Training an artificial neural network
Computing the logistic cost function
Training neural networks via backpropagation
Developing your intuition for backpropagation
Debugging neural networks with gradient checking
Convergence in neural networks
Other neural network architectures
Convolutional Neural Networks
Recurrent Neural Networks
A few last words about neural network implementation
Summary
Chapter 13: Parallelizing Neural Network Training with Theano
Building, compiling, and running expressions with Theano
What is Theano?
First steps with Theano
Configuring Theano
Working with array structures
Wrapping things up – a linear regression example
Choosing activation functions for feedforward neural networks
Logistic function recap
Estimating probabilities in multi-class classification via the softmax function
Broadening the output spectrum by using a hyperbolic tangent
Training neural networks efficiently using Keras
Summary
Index
备用描述
Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analyticsAbout This BookLeverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualizationLearn effective strategies and best practices to improve and optimize machine learning systems and algorithmsAsk - and answer - tough questions of your data with robust statistical models, built for a range of datasetsWho This Book Is ForIf you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning - whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource. What You Will LearnExplore how to use different machine learning models to ask different questions of your dataLearn how to build neural networks using Pylearn 2 and TheanoFind out how to write clean and elegant Python code that will optimize the strength of your algorithmsDiscover how to embed your machine learning model in a web application for increased accessibilityPredict continuous target outcomes using regression analysisUncover hidden patterns and structures in data with clusteringOrganize data using effective pre-processing techniquesGet to grips with sentiment analysis to delve deeper into textual and social media dataIn DetailMachine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data - its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Pylearn2, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization. Style and approachPython Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models
备用描述
Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analyticsKey FeaturesLeverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualizationLearn effective strategies and best practices to improve and optimize machine learning systems and algorithmsAsk – and answer – tough questions of your data with robust statistical models, built for a range of datasetsBook DescriptionMachine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization. What you will learnExplore how to use different machine learning models to ask different questions of your dataLearn how to build neural networks using Keras and TheanoFind out how to write clean and elegant Python code that will optimize the strength of your algorithmsDiscover how to embed your machine learning model in a web application for increased accessibilityPredict continuous target outcomes using regression analysisUncover hidden patterns and structures in data with clusteringOrganize data using effective pre-processing techniquesGet to grips with sentiment analysis to delve deeper into textual and social media dataWho this book is forIf you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning – whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource.
备用描述
Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analytics About This Book Leverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualization Learn effective strategies and best practices to improve and optimize machine learning systems and algorithms Ask -- and answer -- tough questions of your data with robust statistical models, built for a range of datasets Who This Book Is For If you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning -- whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource. What You Will Learn Explore how to use different machine learning models to ask different questions of your data Learn how to build neural networks using Pylearn 2 and Theano Find out how to write clean and elegant Python code that will optimize the strength of your algorithms Discover how to embed your machine learning model in a web application for increased accessibility Predict continuous target outcomes using regression analysis Uncover hidden patterns and structures in data with clustering Organize data using effective pre-processing techniques Get to grips with sentiment analysis to delve deeper into textual and social media data In Detail Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data -- its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Pylearn2, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer som..
备用描述
Link to the GitHub Repository containing the code examples and additional material: (https://github.com/rasbt/python-machine-learning-book) https://github.com/rasbt/python-machi...
Many of the most innovative breakthroughs and exciting new technologies can be attributed to applications of machine learning. We are living in an age where data comes in abundance, and thanks to the self-learning algorithms from the field of machine learning, we can turn this data into knowledge. Automated speech recognition on our smart phones, web search engines, e-mail spam filters, the recommendation systems of our favorite movie streaming services – machine learning makes it all possible.
Thanks to the many powerful open-source libraries that have been developed in recent years, machine learning is now right at our fingertips. Python provides the perfect environment to build machine learning systems productively.
This book will teach you the fundamentals of machine learning and how to utilize these in real-world applications using Python. Step-by-step, you will expand your skill set with the best practices for transforming raw data into useful information, developing learning algorithms efficiently, and evaluating results.
You will discover the different problem categories that machine learning can solve and explore how to classify objects, predict continuous outcomes with regression analysis, and find hidden structures in data via clustering. You will build your own machine learning system for sentiment analysis and finally, learn how to embed your model into a web app to share with the world
Many of the most innovative breakthroughs and exciting new technologies can be attributed to applications of machine learning. We are living in an age where data comes in abundance, and thanks to the self-learning algorithms from the field of machine learning, we can turn this data into knowledge. Automated speech recognition on our smart phones, web search engines, e-mail spam filters, the recommendation systems of our favorite movie streaming services – machine learning makes it all possible.
Thanks to the many powerful open-source libraries that have been developed in recent years, machine learning is now right at our fingertips. Python provides the perfect environment to build machine learning systems productively.
This book will teach you the fundamentals of machine learning and how to utilize these in real-world applications using Python. Step-by-step, you will expand your skill set with the best practices for transforming raw data into useful information, developing learning algorithms efficiently, and evaluating results.
You will discover the different problem categories that machine learning can solve and explore how to classify objects, predict continuous outcomes with regression analysis, and find hidden structures in data via clustering. You will build your own machine learning system for sentiment analysis and finally, learn how to embed your model into a web app to share with the world
开源日期
2022-05-03
🚀 快速下载
成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
🐢 低速下载
由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)
- 低速服务器(合作方提供) #1 (稍快但需要排队)
- 低速服务器(合作方提供) #2 (稍快但需要排队)
- 低速服务器(合作方提供) #3 (稍快但需要排队)
- 低速服务器(合作方提供) #4 (稍快但需要排队)
- 低速服务器(合作方提供) #5 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #6 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #7 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #8 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #9 (无需排队,但可能非常慢)
- 下载后: 在我们的查看器中打开
所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
外部下载
-
对于大文件,我们建议使用下载管理器以防止中断。
推荐的下载管理器:JDownloader -
您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
推荐的电子书阅读器:Anna的档案在线查看器、ReadEra和Calibre -
使用在线工具进行格式转换。
推荐的转换工具:CloudConvert和PrintFriendly -
您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
推荐的工具:亚马逊的“发送到 Kindle”和djazz 的“发送到 Kobo/Kindle” -
支持作者和图书馆
✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。
下面的文字仅以英文继续。
总下载量:
“文件的MD5”是根据文件内容计算出的哈希值,并且基于该内容具有相当的唯一性。我们这里索引的所有影子图书馆都主要使用MD5来标识文件。
一个文件可能会出现在多个影子图书馆中。有关我们编译的各种数据集的信息,请参见数据集页面。
有关此文件的详细信息,请查看其JSON 文件。 Live/debug JSON version. Live/debug page.