MACHINE LEARNING WITH PYTORCH AND SCIKIT-LEARN : develop machine learning and deep learning... models with scikit-learn and pytorch. 🔍
Sebastian Raschka, Yuxi (Hayden) Liu, Vahid Mirjalili, Dmytro Dzhulgakov Packt Publishing, Limited, Packt Publishing, Birmingham, 2022
英语 [en] · 中文 [zh] · EPUB · 63.8MB · 2022 · 📘 非小说类图书 · 🚀/lgli/upload/zlib · Save
描述
PyTorch book of the bestselling and widely acclaimed Python Machine Learning series expanded to include transformers, XGBoost, and graph neural networks Key Features: Learn applied machine learning with a solid foundation in theory Clear, intuitive explanations take you deep into the theory and practice of Python machine learning Fully updated and expanded to cover PyTorch, transformers, XGBoost, graph neural networks, and best practices Book Description: Machine Learning with PyTorch and Scikit-Learn is a comprehensive guide to machine learning and deep learning with PyTorch. It acts as both a step-by-step tutorial, and a reference you'll keep coming back to as you build your machine learning systems. Packed with clear explanations, visualizations, and examples, this book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, we teach you the principles to build models and applications for yourself. Updated to cover deep learning using PyTorch, this book also introduces readers to the latest additions to scikit-learn. Moreover, this book covers various machine learning and deep learning techniques for text and image classification. You will also learn about generative adversarial networks (GANs) for generating new data and training intelligent agents with reinforcement learning. Finally, this new edition is also expanded to cover the latest trends in deep learning, including introductions to graph neural networks and large-scale transformers used for natural language processing (NLP). This PyTorch book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments. What You Will Learn: Explore frameworks, models, and techniques for machines to 'learn' from data Use scikit-learn for machine learning and PyTorch for deep learning Train machine learning classifiers on images, text, and more Build and train neural networks, transformers, and graph neural networks Discover best practices for evaluating and tuning models Predict continuous target outcomes using regression analysis Dig deeper into textual and social media data using sentiment analysis Who this book is for: If you know some Python and you want to use machine learning and deep learning, pick up this book. Whether you want to start from scratch or extend your machine learning knowledge, this is an essential resource. Written for developers and data scientists who want to create practical machine learning with Python and PyTorch deep learning code. This Python book is ideal for anyone who wants to teach computers how to learn from data. Working knowledge of the Python programming language, along with a good understanding of calculus and linear algebra is a must.
备用文件名
lgli/Sebastian Raschka, Yuxi (Hayden) Liu, Dmytro Dzhulgakov - Machine Learning with Pytorch and Scikit-Learn (2022, Packt Publishing).epub
备用文件名
zlib/Computers/Web Development/Sebastian Raschka, Yuxi (Hayden) Liu, Dmytro Dzhulgakov/Machine Learning with Pytorch and Scikit-Learn_19247943.epub
备选标题
Machine Learning with PyTorch and Scikit-Learn : Develop Machine Learning and Deep Learning Models with Python
备选标题
大手笔是怎样炼成的(套装共4册)
备选作者
Sebastian Raschka, Yuxi (Hayden) Liu, Dr. Vahid Mirjalili
备选作者
SEBASTIAN LIU, YUXI (HAYDEN). MIRJALILI, VAHID RASCHKA
备选作者
谢亦森
备用出版商
Packt Publishing - ebooks Account
备用出版商
长江文艺出版社
备用版本
United Kingdom and Ireland, United Kingdom
备用版本
Expert insight, Birmingham, 2022
备用版本
S.l, 2022
备用描述
This book of the bestselling and widely acclaimed Python Machine Learning series is a comprehensive guide to machine and deep learning using PyTorch s simple to code framework. Purchase of the print or Kindle book includes a free eBook in PDF format.Key FeaturesLearn applied machine learning with a solid foundation in theoryClear, intuitive explanations take you deep into the theory and practice of Python machine learningFully updated and expanded to cover PyTorch, transformers, XGBoost, graph neural networks, and best practicesBook DescriptionMachine Learning with PyTorch and Scikit-Learn is a comprehensive guide to machine learning and deep learning with PyTorch. It acts as both a step-by-step tutorial and a reference you'll keep coming back to as you build your machine learning systems. Packed with clear explanations, visualizations, and examples, the book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, we teach the principles allowing you to build models and applications for yourself. Why PyTorch? PyTorch is the Pythonic way to learn machine learning, making it easier to learn and simpler to code with. This book explains the essential parts of PyTorch and how to create models using popular libraries, such as PyTorch Lightning and PyTorch Geometric. You will also learn about generative adversarial networks (GANs) for generating new data and training intelligent agents with reinforcement learning. Finally, this new edition is expanded to cover the latest trends in deep learning, including graph neural networks and large-scale transformers used for natural language processing (NLP). This PyTorch book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments.What you will learnExplore frameworks, models, and techniques for machines to learn from dataUse scikit-learn for machine learning and PyTorch for deep learningTrain machine learning classifiers on images, text, and moreBuild and train neural networks, transformers, and boosting algorithmsDiscover best practices for evaluating and tuning modelsPredict continuous target outcomes using regression analysisDig deeper into textual and social media data using sentiment analysisWho this book is forIf you have a good grasp of Python basics and want to start learning about machine learning and deep learning, then this is the book for you. This is an essential resource written for developers and data scientists who want to create practical machine learning and deep learning applications using scikit-learn and PyTorch. Before you get started with this book, you'll need a good understanding of calculus, as well as linear algebra.
备用描述
This book of the bestselling and widely acclaimed Python Machine Learning series is a comprehensive guide to machine and deep learning using PyTorch's simple to code framework. Purchase of the print or Kindle book includes a free eBook in PDF format. Machine Learning with PyTorch and Scikit-Learn is a comprehensive guide to machine learning and deep learning with PyTorch. It acts as both a step-by-step tutorial and a reference you'll keep coming back to as you build your machine learning systems. Packed with clear explanations, visualizations, and examples, the book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, we teach the principles allowing you to build models and applications for yourself. Why PyTorch? PyTorch is the Pythonic way to learn machine learning, making it easier to learn and simpler to code with. This book explains the essential parts of PyTorch and how to create models using popular libraries, such as PyTorch Lightning and PyTorch Geometric. You will also learn about generative adversarial networks (GANs) for generating new data and training intelligent agents with reinforcement learning. Finally, this new edition is expanded to cover the latest trends in deep learning, including graph neural networks and large-scale transformers used for natural language processing (NLP). This PyTorch book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments. If you have a good grasp of Python basics and want to start learning about machine learning and deep learning, then this is the book for you. This is an essential resource written for developers and data scientists who want to create practical machine learning and deep learning applications using scikit-learn and PyTorch. Before you get started with this book, you'll need a good understanding of calculus, as well as linear algebra. (N.B. Please use the Look Inside option to see further chapters)
备用描述
Fully updated with PyTorch and the latest additions to scikit-learn. Packed with clear explanations, visualizations, and working examples, the book covers essential machine learning techniques in depth, along with two cutting-edge machine learning techniques: transformers and graph neural networks.
MAT000000 - MATHEMATICS / General,COM044000 - COMPUTERS / Neural Networks,COM042000 - COMPUTERS / Natural Language Processing
开源日期
2022-02-25
更多信息……
We strongly recommend that you support the author by buying or donating on their personal website, or borrowing in your local library.

🚀 快速下载

成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️

🐢 低速下载

由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)

所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
  • 对于大文件,我们建议使用下载管理器以防止中断。
    推荐的下载管理器:JDownloader
  • 您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
    推荐的电子书阅读器:Anna的档案在线查看器ReadEraCalibre
  • 使用在线工具进行格式转换。
    推荐的转换工具:CloudConvertPrintFriendly
  • 您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
    推荐的工具:亚马逊的“发送到 Kindle”djazz 的“发送到 Kobo/Kindle”
  • 支持作者和图书馆
    ✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
    📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。