Python Data Science Handbook: Essential Tools for Working with Data 🔍
Jacob T. Vanderplas; Jake VanderPlas O'Reilly Media, Incorporated, O'Reilly Media, Sebastopol, CA, 2016
英语 [en] · PDF · 7.6MB · 2016 · 📘 非小说类图书 · 🚀/lgli/lgrs/nexusstc/zlib · Save
描述
The Python Data Science Handbook provides a reference to the breadth of computational and statistical methods that are central to data-intensive science, research, and discovery. People with a programming background who want to use Python effectively for data science tasks will learn how to face a variety of problems: e.g., how can I read this data format into my script? How can I manipulate, transform, and clean this data? How can I visualize this type of data? How can I use this data to gain insight, answer questions, or to build statistical or machine learning models?
This book is a reference for day-to-day Python-enabled data science, covering both the computational and statistical skills necessary to effectively work with . The discussion is augmented with frequent example applications, showing how the wide breadth of open source Python tools can be used together to analyze, manipulate, visualize, and learn from data.
备用文件名
lgli/Python Data Science Handbook - Essential Tools for Working with Data.pdf
备用文件名
lgrsnf/Python Data Science Handbook - Essential Tools for Working with Data.pdf
备用文件名
zlib/Computers/Programming/Jake VanderPlas/Python Data Science Handbook: Essential Tools for Working with Data_3335035.pdf
备选标题
Python для сложных задач: наука о данных и машинное обучение: 16+
备选作者
Дж. Вандер Плас; [перевела с английского И. Пальти]
备选作者
Плас, Джейк Вандер
备用出版商
Питер
备用版本
First edition, Beijing; Boston; Farnham; Sebastopol; Tokyo, 2016
备用版本
Бестселлеры O'Reilly, Санкт-Петербург [и др.], Russia, 2020
备用版本
Бестселлеры O'Reilly, Санкт-Петербург [и др.], Russia, 2018
备用版本
United States, United States of America
备用版本
First edition, Sebastopol, CA, 2016
备用版本
1st Edition, Dec 10, 2016
备用版本
Beijing, 2017
备用版本
1, PS, 2017
元数据中的注释
0
元数据中的注释
lg2093123
元数据中的注释
{"publisher":"O’Reilly Media"}
元数据中的注释
Фактическая дата выхода в свет - 2019
Пер.: Plas, Jake Vander Python data science handbook Beijing [etc.] : O'Reilly, cop. 2017 978-1491912058
元数据中的注释
РГБ
元数据中的注释
Russian State Library [rgb] MARC:
=001 010135037
=005 20200818133845.0
=008 191025s2020\\\\ru\\\\\\\\\\\\|||\|\rus|d
=017 \\ $a КН-П-20-041981 $b RuMoRKP
=017 \\ $a КН-П-19-080267 $b RuMoRKP
=020 \\ $a 978-5-4461-0914-2
=040 \\ $a RuMoRGB $b rus $e rcr
=041 1\ $a rus $h eng
=044 \\ $a ru
=084 \\ $a З973.2-018.19Python,0 $2 rubbk
=100 1\ $a Плас, Джейк Вандер
=245 00 $a Python для сложных задач: наука о данных и машинное обучение : $b 16+ $c Дж. Вандер Плас ; [перевела с английского И. Пальти]
=260 \\ $a Санкт-Петербург [и др.] $b Питер $c 2020
=300 \\ $a 572, [1] с. $b ил., табл. $c 24 см
=336 \\ $a Текст (визуальный)
=337 \\ $a непосредственный
=490 0\ $a Бестселлеры O'Reilly
=500 \\ $a Фактическая дата выхода в свет - 2019
=534 \\ $p Пер.: $a Plas, Jake Vander $t Python data science handbook $c Beijing [etc.] : O'Reilly, cop. 2017 $z 978-1491912058
=650 \7 $a Техника. Технические науки -- Энергетика. Радиоэлектроника -- Радиоэлектроника -- Вычислительная техника -- Вычислительные машины электронные цифровые -- Программирование -- Языки программирования -- Python $2 rubbk
=852 \\ $a РГБ $b FB $j 3 19-60/157 $x 90
=852 7\ $a РГБ $b CZ2 $h З973.2-018/П37 $x 83
=852 \\ $a РГБ $b FB $j 3 20-32/18 $x 90
=852 \\ $a РГБ $b ORF $x 82
元数据中的注释
Пер.: Plas, Jake Vander Python data science handbook Beijing [etc.]: O'Reilly 978-1491912058
元数据中的注释
Russian State Library [rgb] MARC:
=001 009883865
=005 20190214131403.0
=008 190211s2018\\\\ru\\\\\\\\\\\\000\|\rus|d
=017 \\ $a КН-П-19-007117 $b RuMoRKP
=020 \\ $a 978-5-4461-0914-2
=040 \\ $a RuMoRGB $b rus $e rcr
=041 1\ $a rus $h eng
=044 \\ $a ru
=084 \\ $a З973.2-018.19Python,0 $2 rubbk
=100 1\ $a Плас, Джейк Вандер
=245 00 $a Python для сложных задач: наука о данных и машинное обучение $h [Текст] $c Дж. Вандер Плас ; [перевела с английского И. Пальти]
=260 \\ $a Санкт-Петербург [и др.] $b Питер $c 2018
=300 \\ $a 572, [1] с. $b ил., табл. $c 23 см
=336 \\ $a текст (text) $b txt $2 rdacontent
=337 \\ $a неопосредованный (unmediated) $b n $2 rdamedia
=338 \\ $a том (volume) $b nc $2 rdacarrier
=490 0\ $a Бестселлеры O'Reilly
=534 \\ $p Пер.: $a Plas, Jake Vander $t Python data science handbook $c Beijing [etc.]: O'Reilly $z 978-1491912058
=650 \7 $a Вычислительная техника -- Вычислительные машины электронные цифровые -- Программирование -- Языки программирования -- Python $2 rubbk
=852 \\ $a РГБ $b FB $j 3 19-6/167 $x 90
=852 \\ $a РГБ $b ORF $x 82
备用描述
For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them allIPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, youll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms
备用描述
For Many Researchers, Python Is A First-class Tool Mainly Because Of Its Libraries For Storing, Manipulating, And Gaining Insight From Data. Several Resources Exist For Individual Pieces Of This Data Science Stack, But Only With The Python Data Science Handbook Do You Get Them All—ipython, Numpy, Pandas, Matplotlib, Scikit-learn, And Other Related Tools. Working Scientists And Data Crunchers Familiar With Reading And Writing Python Code Will Find This Comprehensive Desk Reference Ideal For Tackling Day-to-day Issues: Manipulating, Transforming, And Cleaning Data; Visualizing Different Types Of Data; And Using Data To Build Statistical Or Machine Learning Models. Quite Simply, This Is The Must-have Reference For Scientific Computing In Python.-- Ipython: Beyond Normal Python -- Introduction To Numpy -- Data Manipulation With Pandas -- Visualization With Matplatlib -- Machine Learning. Jake Vanderplas. Includes Index.
备用描述
**Revision History**
December 2016: First Edition
2016-11-17: First Release
开源日期
2017-08-18
更多信息……

🚀 快速下载

成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️

🐢 低速下载

由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)

所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
  • 对于大文件,我们建议使用下载管理器以防止中断。
    推荐的下载管理器:JDownloader
  • 您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
    推荐的电子书阅读器:Anna的档案在线查看器ReadEraCalibre
  • 使用在线工具进行格式转换。
    推荐的转换工具:CloudConvertPrintFriendly
  • 您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
    推荐的工具:亚马逊的“发送到 Kindle”djazz 的“发送到 Kobo/Kindle”
  • 支持作者和图书馆
    ✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
    📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。