Python 机器学习蓝图(机翻) 🔍
it-ebooks iBooker it-ebooks, it-ebooks-extra
英语 [en] · 中文 [zh] · EPUB · 7.1MB · 2016 · 📘 非小说类图书 · 🚀/lgli/lgrs/nexusstc · Save
描述
Discover a project-based approach to mastering machine learning concepts by applying them to everyday problems using libraries such as scikit-learn, TensorFlow, and KerasKey FeaturesGet to grips with Python's machine learning libraries including scikit-learn, TensorFlow, and KerasImplement advanced concepts and popular machine learning algorithms in real-world projectsBuild analytics, computer vision, and neural network projects Book DescriptionMachine learning is transforming the way we understand and interact with the world around us. This book is the perfect guide for you to put your knowledge and skills into practice and use the Python ecosystem to cover key domains in machine learning. This second edition covers a range of libraries from the Python ecosystem, including TensorFlow and Keras, to help you implement real-world machine learning projects.The book begins by giving you an overview of machine learning with Python. With the help of complex datasets and optimized techniques, you'll go on to understand how to apply advanced concepts and popular machine learning algorithms to real-world projects. Next, you'll cover projects from domains such as predictive analytics to analyze the stock market and recommendation systems for GitHub repositories. In addition to this, you'll also work on projects from the NLP domain to create a custom news feed using frameworks such as scikit-learn, TensorFlow, and Keras. Following this, you'll learn how to build an advanced chatbot, and scale things up using PySpark. In the concluding chapters, you can look forward to exciting insights into deep learning and you'll even create an application using computer vision and neural networks.By the end of this book, you'll be able to analyze data seamlessly and make a powerful impact through your projects.What you will learnUnderstand the Python data science stack and commonly used algorithmsBuild a model to forecast the performance of an Initial Public Offering (IPO) over an initial discrete trading window Understand NLP concepts by creating a custom news feedCreate applications that will recommend GitHub repositories based on ones you've starred, watched, or forkedGain the skills to build a chatbot from scratch using PySparkDevelop a market-prediction app using stock dataDelve into advanced concepts such as computer vision, neural networks, and deep learningWho this book is forThis book is for machine learning practitioners, data scientists, and deep learning enthusiasts who want to take their machine learning skills to the next level by building real-world projects. The intermediate-level guide will help you to implement libraries from the Python ecosystem to build a variety of projects addressing various machine learning domains. Knowledge of Python programming and machine learning concepts will be helpful.
备用文件名
lgli/Python 机器学习蓝图(机翻).epub
备用文件名
lgrsnf/Python 机器学习蓝图(机翻).epub
备选标题
Python Machine Learning Blueprints : Put Your Machine Learning Concepts to the Test by Developing Real-world Smart Projects, 2nd Edition
备选标题
Python Machine Learning Blueprints - Second Edition
备选作者
Combs, Alexander, Roman, Michael
备选作者
Michael Roman.; Alexander Combs
备选作者
Alexander Combs; Michael Roman
备用出版商
Packt Publishing Limited
备用版本
United Kingdom and Ireland, United Kingdom
备用版本
Place of publication not identified, 2019
备用版本
Packt Publishing, Birmingham, UK, 2016
备用版本
Second edition, Birmingham, 2019
备用版本
Jan 31, 2019
备用版本
2019-01-31
元数据中的注释
{"content":{"parsed_at":1702196977,"source_extension":"epub"},"isbns":["1788994175","9781788994170"],"publisher":"iBooker it-ebooks","series":"it-ebooks-extra"}
备用描述
Discover a project-based approach to mastering machine learning concepts by applying them to everyday problems using libraries such as scikit-learn, TensorFlow, and Keras Key Features Get to grips with Python's machine learning libraries including scikit-learn, TensorFlow, and Keras Implement advanced concepts and popular machine learning algorithms in real-world projects Build analytics, computer vision, and neural network projects Book Description Machine learning is transforming the way we understand and interact with the world around us. This book is the perfect guide for you to put your knowledge and skills into practice and use the Python ecosystem to cover key domains in machine learning. This second edition covers a range of libraries from the Python ecosystem, including TensorFlow and Keras, to help you implement real-world machine learning projects. The book begins by giving you an overview of machine learning with Python. With the help of complex datasets and optimized techniques, you'll go on to understand how to apply advanced concepts and popular machine learning algorithms to real-world projects. Next, you'll cover projects from domains such as predictive analytics to analyze the stock market and recommendation systems for GitHub repositories. In addition to this, you'll also work on projects from the NLP domain to create a custom news feed using frameworks such as scikit-learn, TensorFlow, and Keras. Following this, you'll learn how to build an advanced chatbot, and scale things up using PySpark. In the concluding chapters, you can look forward to exciting insights into deep learning and you'll even create an application using computer vision and neural networks. By the end of this book, you'll be able to analyze data seamlessly and make a powerful impact through your projects. What you will learn Understand the Python data science stack and commonly used algorithms Build a model to forecast the performance of an Initial Public Offering (IPO) over an initial discrete trading window Understand NLP concepts by creating a custom news feed Create applications that will recommend GitHub repositories based on ones you've starred, watched, or forked Gain the skills to build a chatbot from scratch using PySpark Develop a market-prediction app using stock data Delve into advanced concepts such as computer vision, neural networks, and deep learning Who this book is for This book is for machine learning practitioners, data scientists, and..
开源日期
2022-08-24
更多信息……

🚀 快速下载

成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️

🐢 低速下载

由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)

所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
  • 对于大文件,我们建议使用下载管理器以防止中断。
    推荐的下载管理器:JDownloader
  • 您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
    推荐的电子书阅读器:Anna的档案在线查看器ReadEraCalibre
  • 使用在线工具进行格式转换。
    推荐的转换工具:CloudConvertPrintFriendly
  • 您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
    推荐的工具:亚马逊的“发送到 Kindle”djazz 的“发送到 Kobo/Kindle”
  • 支持作者和图书馆
    ✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
    📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。